A case for neuroscience in mathematics education

نویسندگان

  • Ana Susac
  • Sven Braeutigam
چکیده

Mathematics lies at the heart of science and technology impacting on the economic performance of societies since ancient times (OECD, 2010). At the level of individuals too, the development of mathematical proficiency appears correlated with individual development and career prospects across a wide range of professions (RAND Mathematics Study Panel and Loewenberg Ball, 2003). It does not come as a surprise to realize that mathematics education traces back several thousand years. However, still very little is known about the fundamental principles of how individuals learn mathematics and at which age education should start. The issue is far from trivial as it is commonly assumed that mathematics is a special subject area perhaps requiring specific motivation, interest and teaching methods in order to be learned efficiently (National Council of Teachers of Mathematics, 2000). Here, we are attempting to make a case for neuroscience methodology as a modern tool capable of contributing to the debate, where a special but not exclusive emphasis is on brain development. Note that for the purpose of this opinion paper, neuroscience is essentially equated with magnetic resonance imaging (MRI), as MRI based approaches currently constitute mainstream research in this field of study according to our understanding. Developmental studies are increasing our understanding of maturational changes in the human brain (Blakemore, 2012). In particular, structural MRI studies reveal an increase in white matter volume during childhood and adolescence suggesting an increase of connectivity in the developing brain (Giedd and Rapoport, 2010). Interestingly, gray matter volume is characterized by an invertedU shaped curve peaking at different age in different brain regions (Giedd et al., 1999), which suggests a non-linear, heterogeneous trajectory where proficiencies mature at different times and speeds dependent on which brain regions are most important for a given skill. For example, it is commonly agreed that the intuitive sense of number or quantity is an early ability that can be observed already in infants and that can predict mathematical proficiency later in life (Starr et al., 2013). In addition to structural studies, functional neuroimaging provides further insight relevant to mathematics education. For example, a developmental functional MRI study of mental arithmetic has shown that the pattern of brain activation changes with student age (Rivera et al., 2005). Importantly, these age-related changes were associated with functional maturation rather than alterations in gray matter density. Moreover, functional studies can help to elucidate the role of specific brain regions in mathematical processing. For example, it has been suggested that the intuitive understanding of quantities is associated with activity in the intra-parietal sulcus (Dehaene, 1997) and, more generally, parietal cortices that are involved in various mathematical tasks from number comparison to complex processing such as proportional and deductive reasoning (e.g., Kroger et al., 2008; Vecchiato et al., 2013). However, additional studies are needed to establish links between development of brain structures and their functional maturation. Many neuroimaging studies have focused on development of arithmetic skills in children and adults (for a review see Zamarian et al., 2009). Again, different parts of the parietal cortex, such as bilateral intra-parietal sulcus and left angular gyrus, are shown to have a crucial role in mental calculations (e.g., De Smedt et al., 2011; Grabner et al., 2013). In contrast, other brain areas appear to mature relatively late, such as prefrontal association areas thought to be involved in mathematical cognition and other higher-order processes developing throughout childhood and adolescence (Blakemore, 2012). Such insight might shed some light on the transition from concrete arithmetic to the symbolic language of algebra, where students have to develop abstract reasoning skills that enable them to generalize, model, and analyze mathematical equations and theorems (e.g., Qin et al., 2004; Lee et al., 2007; Anderson et al., 2012). Ultimately, mathematical proficiency will require the coordinated action of many brain regions as exemplified by an influential model of algebraic equation solving (Anderson et al., 2008). Based largely on functional MRI studies of brain activation, the model stipulates distinguishable functional modules that map onto anatomically separate brain regions. For example, a visual module that extracts information about the equation is associated with the fusiform gyrus. An imagery module holding a representation of the equation and performing transformations on the equation is located in posterior parietal cortices. A module responsible for retrieval of previously learned algebraic rules is associated with the left prefrontal cortex. Such models are

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cognitive Neuroscience and Mathematics Education

This article is primarily addressed to cognitive scientists and neuroscientists interested in education. For quite some time mathematics education has seemed an area in which cognitive neuroscience might make important contributions. This has not happened: studies have been large in number but small in impact, and education has been influenced more by misunderstandings and over-simplifications ...

متن کامل

Complementing Neurophysiology Education for Developing Countries via Cost-Effective Virtual Labs: Case Studies and Classroom Scenarios.

Classroom-level neuroscience experiments vary from detailed protocols involving chemical, physiological and imaging techniques to computer-based modeling. The application of Information and Communication Technology (ICT) is revolutionizing the current laboratory scenario in terms of active learning especially for distance education cases. Virtual web-based labs are an asset to educational insti...

متن کامل

Neuroscience Experiments for Mathematics Education

These experiments are explicit, designed to give clear outcomes, and have significant impact on educational practice. The first group explores difficulties caused by mixing cognitively distinct activities. Topics are multiplication of polynomials, word problems, and customary notation and usage. The second group explores subliminal (invisible or unanticipated) learning. Topics are algebra in el...

متن کامل

Cognitive neuroscience meets mathematics education: It takes two to Tango

Against the background of the organization of an EARLI Advanced Study Colloquium on Cognitive Neuroscience Meets Mathematics Education, we argued that the interdisciplinary field of neuroscience and education should be conceived as a two-way street with multiple bi-directional interactions between educational research and cognitive neuroscience (De Smedt et al., 2010a). In his response to our p...

متن کامل

To Study the Effect of Combined Learning on Students' Educational Achievement in Mathematics

The main purpose of this research is "to study the effect of combined learning on students'educational achievement at girls' technical schools in Tehran". The research method in thisstudy is semi-experimental or semi-empirical. The statistical universe of this study includesall girl students of Tehran technical schools. At the first stage, 6 technical schools wereselected randomly and simply am...

متن کامل

Skills underlying mathematics: The role of executive function in the development of mathematics proficiency

The successful learning and performance of mathematics relies on a range of individual, social and educational factors. Recent research suggests that executive function skills, which include monitoring and manipulating information in mind (working memory), suppressing distracting information and unwanted responses (inhibition) and flexible thinking (shifting), play a critical role in the develo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014